
An Integrated Framework for Procedural Modeling

Björn Ganster ∗ Reinhard Klein †

Abstract

This paper proposes a new type of visual language to integrate
the features of previous procedural modeling systems into a sin-
gle modeling environment. As in a visual dataflow pipeline, we
let nodes wrap operations, but instead of using pipelines to define
dataflow, we use edges to define the order of execution. Models can
be created efficiently without needing time-consuming compilation
runs or learning an unintuitive syntax, and the new system offers
a mechanism that can alter procedural models in the viewport. An
example demonstrates how to use the new system to create complex
models consisting of buildings, plants and landscapes procedurally
without resorting to external tools.

CR Categories: I.3.5 [Computing Methodologies]: Com-
puter Graphics—Computational Geometry and Object Modeling;
I.3.7 [Computing Methodologies]: Computer Graphics—Three-
Dimensional Graphics and Realism; D.3.3 [Software]: Program-
ming Languages—Language Constructs and Features; I.6.3 [Com-
puting Methodologies]: Simulation and Modeling—Applications

Keywords: Computer Graphics and Modeling, Procedural Mod-
eling, Visual Programming Languages

1 Introduction

Procedural modeling aims at automatic creation of large scenes
for films and computer games through algorithms or sets of rules.
The parameters and rules producing the scene are often very small
compared to the file size of the model. This is known as data
amplification [Smith 1984]. The level of detail can be controlled
by a parameter that governs the number of polygons created for
different parts of the scene. Incorporating random variables allows
new variants of the model to be created automatically, but the same
random seed can be used to reproduce the model.

We will require some concepts from graph theory: A graph
is defined as an ordered pair G = (V,E), where V is a set of
vertices, and E is a set of edges connecting the vertices. Often,
E ⊂ V ×V . If an edge e ∈ E from a ∈ V to b ∈ V is directed,
it cannot be followed in the reverse direction, but there may
be an opposite edge from b to a. If the edges are undirected,
they can be followed in both directions. A path is an ordered
set of vertices v1, ...,vn, where vi and vi+1 are connected by
edges. A path that starts and ends with the same vertex v1 = vn is
called a cycle. If a graph does not contain a cycle it is called acyclic.

L-Systems are a common solution to modeling plants
[Prusinkiewicz and Lindenmayer 1990; Lindenmayer 1968],
and can also be used for streets and buildings [Parish and Müller
2001]. These systems are based on rules for replacing string parts
to derive a high-level description of the model, for example the
skeleton of a plant, and generate the geometry in a second step. An
alternative grammar for buildings are shape grammars [Stiny 1975;

∗e-mail:mail@bjoern-ganster.de
†e-mail:rk@cs.uni-bonn.de

Wonka et al. 2003; Müller et al. 2006]. The drawback of grammars
is that they are usually limited to a specific class of models
and they require a lot of training and time for experimenting.
Furthermore, it is not obvious how to parallelize the rewriting of
context sensitive grammars to make use of modern multicore CPUs.

A different procedural approach is used in Xfrog, that also gener-
ates very convincing plants. The system allows a user to visually
specify so-called p-graphs whose vertices produce primitives
or layouts [Lintermann and Deussen 1998]. Xfrog converts the
p-graph into the i-tree by replicating multiplier vertices, then it
builds the geometry from the i-tree. The conversion is sufficiently
fast for interactive display. Although organic architectural designs
were among the original design goals, it works best for plants and
trees and it is unsuitable for more general modeling tasks. Creating
plants is more intuitive in Xfrog than in an L-System.

John Snyder introduced the GenMod system for generative model-
ing [Snyder 1992] . The system produces 3D shapes from several
curves without an intermediate step. It is based on a C interpreter
with overloaded operators, therefore it has variables, arrays, loops
and formulas in infix notation. More recently, Sven Havemann
implemented a similar system that employs a stack-based postfix
notation to avoid the need for variables and a parser [Havemann
2005]. His system is called GML, for Generative Modeling
Language. GML’s applications focus on architecture and its most
interesting feature are programmable gizmos. Gizmos are special
points that allow the user to edit the parameters of a primitive by
moving a handle in the viewport. GML’s gizmos allow the user
to define how the gizmos are mapped to parameters of an object.
This can be duplicated in Maya by taking cubes or spheres as a
gizmos, and a script that evaluates their positions to determine new
parameters for a model. Programmable gizmos can be used to
define the side lengths of a cube or building, the radius of a cylinder
or tower, the opening angle of a piece of pie, or the hull of an object
whose surface is defined procedurally. GML requires human users
to perform the conversion from infix to postfix notation although
computers can do this faster and more reliable [Aho et al. 1986].

Other possibilities to describe a procedural model are to code it
in a programming or scripting language, using scene graph class
libraries or storing a list of primitives. A scene graph is a directed
acyclic graph whose nodes wrap computer graphics operations and
whose edges declare functional dependences [Strauss and Carey
1992]. While scripts are interpreted and therefore do not offer full
performance, programs need to be compiled. Thus, it depends on
the task at hand whether a program or a script is more handy. For a
compiled application, changing parameters requires recompilation,
unless a user interface is also implemented.

In a visual dataflow pipeline, each operation is wrapped by a
node that may have several input and output attributes. One
node’s output attribute can be connected with another node’s
input attribute to form a pipeline, hence the name visual dataflow
pipeline (VDFP). VDFPs are used for many tasks in computer
graphics, e.g. they can be used to write shaders [Goetz et al. 2004],
and they control the dataflow and object dependences in Maya
[Gould 2002]. Ackerman established several properties of dataflow
languages [Ackerman 1982], among them the single assignment

System Gizmos Variables Arrays Formulas Local Modulari- Autoparal- Model types
Loops zation lelization

GenMod No Yes Yes Yes Yes Yes No any
GML Yes No (stack) Yes (postfix) Yes Yes No any
L-Systems No No No Yes No Limited [Hanan 1992] No plants, streets
Scripts Yes: MEL Yes Yes Yes Yes Yes No any
VDFPs No No Yes (visual) Yes Yes Yes any
Xfrog No No No Yes No No No plants
Model Graphs Yes Yes Yes Yes Yes Yes Yes any

Table 1: We propose model graphs to integrate the features of previous approaches to procedural modeling into a single system

Vendor Software Name VDFP Name Scripting Language
Autodesk Maya Dependency Graph Maya Embedded Language (MEL), Python
Autodesk 3DS Max None MaxScript
Maxon Cinema 4D XPresso COFFEE
blender.org Blender Nodes Python

Table 2: Overview on visual and textual scripting languages in 3D software packages

property, that assert that nodes can be executed concurrently
when their inputs have arrived. In a VDFP, the single assignment
property is embodied in the fact that every input may be connected
to only one output, but one output may be connected to several
inputs.

Visual languages visualize structural dependences and the param-
eters for function calls very well and they are recognized as being
easier to learn than textual representations of programs. While
textual programs are structured by keywords such as if, for,
while, or the semicolon, VDFPs are structured by nodes and their
connections. VDFPs do not require the user to type keywords, and
are thus less prone to syntactic errors due to missing or misplaced
keywords, but they require users to connect icons for each operator
in a formula, therefore it is often faster to enter a formula on the
keyboard.

VDFPs have several issues that are not handled satisfactory. If
an array is the output of a node and it is the input of two nodes,
each node has to copy the entire array or it has to maintain a list
of changes to the array. Loops have to be expressed as cycles, as
recursions, or they require specialized constructs. More impor-
tantly, it is not clear how to achieve optimum performance. If each
node would be run on a separate processor that communicates via
messages with the other processors, processors would spend most
of their time waiting for messages. Therefore, more intelligent
scheduling is required. Johnston et al outline solutions to these
problems, but they report these issues to be still open [2004].

2 Problem Statement

Tab. (1) compares important aspects of procedural modeling
systems. Gizmos allow a user to model parts of a scene directly in
the 3D viewport by dragging handles. For parameters related to
positions, this is the most intuitive method of editing. Variables
and arrays store values that change over time or are computed
iteratively. They are useful for procedural modeling because they
can store state for more complex operations. Procedural modeling
requires models to be described by formulas, therefore formulas
are an important aspect of design for any procedural modeling
language. Modularization is required to divide complex models

into smaller components and it improves reusability of models.
Local loops reflect the ability to loop code fragments as opposed
to the global loop of replacements over the text of an L-System.
Automatic parallelized execution removes the burden of parallel
programming from the user. This is necessary for full performance
on multicore CPUs.

Standard 3D graphics suites include scripting languages, store their
state in scene graphs, and often include visual dataflow pipelines.
But the solutions found in Maya, 3DS Max and Cinema 4D differ
too little from their generic implementation to warrant a detailed
discussion, so Tab. (1) does not include them. Tab. (2) gives an
overview of these packages.

Let us summarize our findings on previous procedural modeling
systems. Xfrog is a very user-friendly solution for modeling plants,
but its workflow cannot be applied for more complex procedural
modeling tasks that require looped or recursive computations and
it does not allow editing in the viewport. VDFPs are also based on
nodes and offer user-defined functions, but creating the nodes for
formulas may take longer than typing the formula on the keyboard.
L-Systems yield results comparable to those of Xfrog, but they
require even more time to achieve them. Scripting languages do
not offer the ease-of-use found in Xfrog or VDFPs. We conclude
that there is no single system bringing together all strengths of
procedural modeling.

Similar limitations have been addressed by forming tool pipelines
[Deussen et al. 1998; Parish and Müller 2001; Müller et al. 2006].
However, interactions between various parts of the scene must be
reflected in the pipeline and require the definition of exchange file
formats. Therefore, tool pipelines tend to be more inflexible than
integrated solutions. In addition, all separate tools need to be main-
tained, by paying upgrade fees, installing the upgrades, and train-
ing, and code produced for one solution may not be usable in the
context of another tool. An integrated solution allows all objects to
be viewed and edited in a single application. Additional function-
ality should be added in the form of plugins.

Figure 1: Screenshot of the new system. The model graph is edited
in the upper left, the attributes of the selected vertex are displayed
below that, and the right half displays the results of running this
model graph.

3 The New Visual Language

We propose a new visual system that allows entering formulas
in infix notation. Infix notation requires variables, but normal
variables defy the single assignment rule of dataflow and thus
VDFPs [Ackerman 1982]. The basic idea of the new language is
this: A visual language that stores named variables on a heap does
not require pipelines to transport data, as a VDFP does. Instead,
we can use directed edges to define the order of execution, and
have special nodes that perform variable assignments. In doing
so, we retain the advantage of nodes with attributes that wrap
operations and make calling functions in visual languages so easy.
The new language requires an algorithm to transform its programs
to scene graphs for display. Therefore, these visual programs are
sufficiently different from scene graphs to justify an own name.
We will call them model graphs.

Fig. (1) shows a screenshot of the system. Every node in a model
graph has a number of attributes that the user may edit. They
are displayed when the user clicks the node in the model graph
or the geometry created by them in the viewport. All attributes
with numeric results can be computed from formulas which may
include comments. The formulas may use the operators +, -,
*, /, % (modulo division) and the functions in Tab. (3). Nodes
are connected by dragging the target node onto the source node.
Dragging the target node onto the source node again disconnects
the nodes.

A model graph node may have any number of incoming and
outgoing edges, and may be connected to any other node, but not
to itself. The nodes in a model graph are visited by depth-first
traversal. We display starting edges below a node, and incoming
edges above it. Outgoing edges are executed in the same order as
their edges start under the node, from left to right. The nodes, their
attributes and edges completely define the model graph, which is
equivalent to a program.

We introduce the operators that create textures first. All texture
operators also define diffuse and specular reflection and specular
shininess for use in the Phong lighting model:

Function Calculates
random Random number between 0 and 1

min (a, ...,z) Minimum of comma-separated list
max (a, ...,z) Maximum of comma-separated list

abs (x) Absolute |x| of x
sign (x) Sign of x
sin (α) Sine of α

cos (α) Cosine of α

tan (α) Tangent α

asin (α) Inverse sine
acos (α) Inverse cosine
atan (α) Inverse tangent
trunc (x) Truncate to integer
sqrt (x) Square root

length (~x) Length of a vector~x
size (A) Number of elements in an array

getRed (T,u,v) red component for texel at (u,v)
in texture T in the range [1;0]

getGreen (T,u,v) Like getRed, for green component
getBlue (T,u,v) Like getRed, for blue component

getAlpha (T,u,v) Like getRed, for alpha component
bezierX (array, value) Evaluate array including x, y, z

values as a bezier curve,
returns x component

bezierY (array, value) Like bezierX, for y component
bezierZ (array, value) Like bezierX, for z component

Table 3: Functions supported in model graphs. All angles are in
degrees.

TextureFile:
Loads a texture from a file. It has a parameter stating
the file name for the texture.

RoughTextureGenerator:
Chooses a random value X ∈ [0;1[for every texel and
stores X · ~C1 +(1−X) · ~C2 in a texture. Depending on
how different the user-defined colors ~C1, ~C2 are, this
produces a rougher or smoother texture.

ProceduralTextureGenerator:
Evaluates formulas for the red, green and blue chan-
nels and optional interim values for every texel of a tex-
ture. It is more versatile than RoughTextureGenerator,
but also slower.

TransparentTextureGenerator:
Similiar to ProceduralTextureGenerator, but it adds an
alpha channel.

All operators that create geometry are referred to as components.
They require a texture as a parameter:

PolygonComponent:
Creates a single polygon from an arbitrary number of
vertices that are given by x, y, z space coordinates and
u, v texture coordinates.

AddPolygonComponent:
Creates a new mesh or adds a polygon to an existing
mesh. For every new point, a record variable is cre-
ated that contains the index and coordinates of the new
point. The new polygon is created by stating point in-
dices. This operator is useful to create closed meshes.

ConeComponent:
Creates the geometry for a cone. The user may state the
radius, length, and number of triangles.

CubeComponent:
Creates the geometry for a cube. The parameters de-
scribe the side lengths.

CylinderComponent:
Creates the geometry for a cylinder. There are param-
eters for the length, radius, and polygon count of the
cylinder.

SphereComponent:
Constructs the geometry of a sphere from parameters
for the x, y, z radius, and the number of stacks and slices.

Objects are usually created at the origin, and we use matrices to
move them. The operators defining the matrices apply to child
nodes:

TranslateOperator:
Defines a translation matrix. It has parameters for x, y,
z translation.

RotateOperator:
Defines a rotation matrix. The parameters give the axis
and the angle of rotation.

ScaleOperators:
This operator scales all subsequent geometry by a scale
factor for the different coordinate axes.

TransformOperator:
This operator allows to define arbitrary 4×4 matrices.

The following operator assigns variables:

AssignmentOperator:
Declares, initializes and updates variables, records and
arrays. Each of these has a name, type, and value. See
Fig. (2) for an example.

Variables are strictly typed as int, double, or record. It is
possible to create arrays of these data types. Additional data types
are recordRef, which stores a reference to a record, and handle,

Figure 2: An example of an AssignmentOperator

which is used to store pointers to geometry.

The introduction of an if-node allows to us to branch during
execution. It defies depth-first traversal in that only one successor
is visited:

Comparator:
Compares pairs of values until one comparison evalu-
ates to true. The number of this comparison yields the
number of the edge that is followed to the node which
is executed next. If there is an additional edge, it will be
used in case all comparisons failed, as an ”else” branch.

Model graphs may contain cycles that equal loops and could be
discontinued using Comparators. However, using the following
control operators is more convenient and less error-prone:

ForOperator:
Counts a variable from a start value to an end value and
calls its child nodes for each value.

WhileOperator:
Executes its children while the specified condition
holds.

Model graphs may become quite complex, therefore we imple-
mented a means to break them into several modules:

CallOperator:
Executes a model graph as a subroutine, passing user-
defined parameters.

Execution starts in any node without incoming edges. But we need
a means to define its parameters:

StartOperator:
Defines the input and output parameters for calls from
other model graphs. Each parameter has a name, a type
and a default value.

If the model graph is run directly, not called from another model
graph, the default values in the StartOperator are used to initialize
the parameters. After the user has entered the file name of a model
graph into a CallOperator, the system extracts the parameters from
the StartOperator in that graph and fills in the default parameters.
The user may edit these. When the model graph is executed, input
parameters are copied into variables, and output parameters are
passed as references to variables. In order to perform a recursion,
the model graph simply calls itself using CallOperator.

StartOperator and CallOperator provide the means to export repeti-
tive tasks as separate model graphs, allowing additional primitives,
mathematical operations and algorithms to be implemented as
model graphs. Several vector operations have been implemented
in this fashion. Every model graph has its own variable scope.
Therefore, variables defined in a model graph are only visible in
that model graph for that call, unless passed as an output parameter.
There are no global variables.

Specialized components for creating geometry include:

QuadStripComponent:
Adds a strip of quads constructed from two functions
for the x, y, z, u, v coordinates with user-defined start,
stop and step width parameters.

AreaComponent:
Constructs a surface from a two-dimensional function.
The parameters give the start and end values for the
variables, and the function is entered as x, y, z, w com-
ponents.

StemComponent:
Connects a series of generalized cylinders from an array
of points and radii to a tube-like surface. It is helpful
for trunks, branches and twigs of plants or arches on
buildings.

Normally, the result of a model graph is displayed after it has
been executed. The following operator allows for interactive model
graphs:

RenderOperator:
This operator creates a scene from its subsequent ver-
tices for immediate display. This makes animations and
interactive applications such as games possible.

WaitOperator:
This operator waits for a specified time. This is useful
to reduce CPU load in animations.

Some other important node types are:

GizmoOperator:
Stores an array of points that the user may edit by key-
board or move in the viewport. In the latter case, the
model graph is executed automatically to produce a new
model from the parameters derived from the gizmos.

AlertOperator:
Displays the values of functions and variables when
processed. It is useful for debugging and displaying
progress information during lengthy operations.

SaveVariablesOperator:
The user may state a number of variables to store in
an XML file. This is useful for storing the results of a
simulation or other computation for later use.

LoadVariablesOperator:
This operator will load all variables from an XML file
that was created using SaveVariablesOperator or any
other file that uses a compatible format. This allows a
user to separate algorithms and data, or to include data
from external sources.

LightSourceOperator:
Defines a light source. Its position is given by x, y, z,
w coordinates, its brightness is given as red, green and
blue channels, and there are parameters for attenuation.
Reflected light is simulated by a parameter named am-
bient factor.

idOperator:
This operator does nothing other than visit its child
nodes.

MeshFileComponent:
In order to exchange geometry with other programs,
models may be exported in .obj format and can be in-
cluded through this component.

We store frequently used functions as parse trees in C++ classes to
reduce parsing overhead, therefore repeated arithmetic operations
and access to variables or constants incur only a virtual method call
compared to native code. Model graphs are cached to further reduce
loading and parsing time. Full performance on multicore hardware
requires parallel execution of code, but parallel execution is beyond
the knowledge of most computer users. A model graph called from
a CallOperator can be executed parallel to its caller provided that
there are no output parameters and the CallOperator does not have
any outgoing edges. This kind of parallelization requires no action
on the part of the artist. The only synchronization required is at
the end of model graph execution, where rendering has to wait un-
til all model graph threads have been completed. These optimiza-
tions assure the performance we strive for. The new system was
implemented in C++ and uses the OpenGL, PThreads and FreeGlut
libraries. The model graphs are stored in XML file format.

4 Examples

We will prove the versatility of the new system by demonstrating
how model graphs can be used to model trees, buildings and
landscapes.

The first model graph in Fig. (3) creates trees using a technique
described by Oppenheimer [1986]. Numbers are displayed beside

Figure 3: From left to right: the first model graph creates a tree, the second calculates the order of points on a roof (calcRoofOrder), the
third creates the geometry for a roof (roof) , and the fourth creates a hill landscape

the icons to clarify the order of execution, but they are not visible
in the editor. Execution starts in StartOperator1 (node 1). It defines
the interface for calling this model graph from another model
graph using CallOperator. Among these parameters are the length
and number of segments in a twig, the thickness of the stem, the
number of recursions to perform, and the textures to use.

Node 2 is an AssignmentOperator. It declares a new variable that
will store the starting positions of the new branches (stem). Node
3 is a ForOperator executing node 4 in a loop that initializes stem.
Fig. (2) shows the assignments of node 4. Execution continues
with the next child of node 2, node 5. It creates the geometry for
the trunk of the tree from stem and a bark texture.

Nodes 6 and 7 test if enough recursions have been performed and
a leaf texture was given as a parameter. In that case, nodes 8-11
create the leaves. Node 8 is a ForOperator that creates the leaves in
a loop with the aid of a translation in node 9 and a rotation in node
10. Node 11 creates a leaf polygon.

Nodes 12-17 create twigs by recursion. Node 12 tests if further
recursions are skipped by testing the parameter recursions.
Node 13 is another ForOperator that runs nodes 14-17 in a loop to
create twigs. Nodes 14-16 transform the new twig. Node 17 is a
CallOperator that performs the recursion necessary to produce the
next level of twigs.

A sketch-system for buildings has been implemented using model
graphs. Pascal Müller’s CityEngine System [Parish and Müller
2001; Müller et al. 2006] allows placing and editing buildings
in the viewport, but we aim for a solution that makes interactive
editing of roofs possible. Our sketch system for buildings computes
a building from gizmos that define the corners of a building and its
roof. Moving these points allows the user to edit buildings inter-
actively at a lower resolution. This requires several model graphs.
calcRoofOrder sorts the input points by height and assigns each
point a roofOrder depending on its height, see Fig. (3). Two
points have the same roofOrder if they have approximately the
same height (subject to a parameter heightTolerance). This
information is used to compute the geometry automatically.

calcRoofOrder’s StartOperator (node 1) takes the following
parameters: frontPoints gives the number of points defining

the facade of the building. frontPoints is a parameter since
it cannot be computed. If all points defining the front have the
same height, counting them would give frontPoints, but as
demonstrated by saddle roofs, not all front points need to have the
same height. points contains the corners of the building and the
roof. The points defining the facade must be placed in this array
first. There are also texture parameters and a flag highQuality
that decides whether to create a single polygon for each building
side or detailed windows and an entrance.

Node 2 declares the array roofOrder and several help arrays used
later. Nodes 3-11 copy the y coordinates of the points array into
an array heightsFound that contains each height level only once
(height levels: intervals of heights±heightTolerance). Node
12 calls another model graph that sorts heightsFound. Nodes 13-
17 assign a roofOrder to each point by finding the closest height
level. Node 18 calls a separate model graph (generateFacade)
to produce a facade from the points, including windows and
entrances. Since the creation of the facade, windows, and entrances
consists mainly of polygon lists and low-level computations, these
will not be presented in detail.

The model graph for roof creation (roof) has a StartOperator
taking the same arguments as that in calcRoofOrder, with the
addition of roofOrder. Nodes 2-11 compute several values from
the input parameters. Nodes 12-21 compute the nearest point of
the next roof order for each point by euclidian distance. Node 22
iterates over nodes 23-29 to create the roof polygons. The overall
time complexity of this model graph is O(n2). A voronoi diagram
would reduce asymptotic costs, but would likely be slower for the
small numbers of points required to define a building.

The model graph SlopingHills, shown right in Fig. (3), calculates
a heightfield for a mountain range. StartOperator1 (node1) defines
its global parameters: the resolution of the heightfield to create
(xsize, ysize), the number, height and slope of the mountains.
Node 2 declares the arrays arr and delta. arr will store
the heightfield, while delta stores the slope of a point in the
heightfield to its highest neighbour. delta is required because we
need the slope between two points to be reproducible. Nodes 3-5
initialize arr and delta.

Node 6 executes nodes 7-16 in a for loop to create the mountain
ridges. Nodes 8 and 9 create a bezier curve for the mountain peak

Figure 4: Model graphs can be used to model trees, buildings and landscapes

starting from the position selected in node 7. Nodes 10-16 copy
that curve into the heightfield. The mountain slopes are calculated
for each cell in the heightfield by subtracting delta from the
highest neighbour, multiplied by that neighbour’s distance (

√
2 for

diagonal neighbours, 1 otherwise). Node 18 executes nodes 19-32
until all cells have received their final values.

To speed up computation of neighbours, the directions of the for
loops in nodes 28, 29 have to be changed every turn, otherwise
height values would be propagated by only one cell against
the direction of the for loops every turn. Node 17 defines the
directions, nodes 21 to 27 select the appropriate values for nodes
28, 29. Finally, nodes 28-32 propagate the height values through
the heightfield.

After propagation of the height values is complete, the results are
stored to disk (node 33). Node 34 sets up a light source for display
and node 35 calls another model graph that converts the heightfield
into polygons. A separate model graph smoothes the hills created
above depending on the height of a cell. This is useful to recreate
the effect of rolling hills.

Fig. (4) shows an image that uses the model graphs discussed in
this section. Geometry creation takes about 27s using a single
thread, and 17s using multiple threads on an AMD Opteron 180
with 2400MHz and 2.5 GB RAM. The mountain is read from a file.
The scene consists of more than 800.000 polygons.

5 Discussion

The number of variables, polygons and textures are limited
only by the hardware. Despite the optimizations, model graphs
are currently an interpreted language and thus do not reach the
performance of compiled applications. This is a limit in case of

computationally expensive operations, but it could be overcome
through just-in-time-compilation or by exporting model graphs as
C++ code. The Deutsch-limit states that a computer monitor is
usually limited to about 50 icons that can be visible at a time, and
that this is insufficient to implement complex applications. This
limit does not apply to model graphs since model graphs can be
distributed into several modules and large model graphs benefit
from a scroll bar.

Tab. (1) shows that the new system includes the strengths of its
predecessors and avoids their shortcomings. The importance of
these features is underlined by the fact that the example uses all of
the features in the table.

While GML stores all of its data on the stack, model graphs
have variables and complex data types that allow for formulas
in infix notation. Infix notation is more familiar to humans than
postfix notation, and computers can translate it into machine code
faster and more reliable than humans can. Model graphs visualize
functional dependences better than the postfix notation used in
GML. The common strength of both systems are the gizmos that
add interactive editing in the viewport to procedural modeling.

Both VDFPs and model graphs wrap operations with nodes, but
the meaning of the edges is fundamentally different. VDFPs use
edges to transport data and nodes may be executed when all data
has arrived, model graphs store data on a heap and use edges
to define a strict order of execution. As a consequence, VDFPs
require nodes for all operators in a formula, while model graphs
allow functions to be typed faster in infix notation. Model graphs
achieve high performance since they require little synchronization
for parallelism and arrays can be changed efficiently, whereas
a VDFP needs to create copies for all changes to an array, or
stores the changes in a list and efficient execution requires delicate
scheduling. Model graphs have a very intuitive notation for loops.

Figure 5: A tree produced using model graphs

As stated earlier, visual languages like VDFPs, Xfrog and model
graphs have advantages to textual languages since they visualize
functional dependences and function parameters better. Using
grammar-based systems requires a lot of experience and time for
experimenting in order to create plants or buildings, but the model
graph nodes closely reflect basic concepts in computer graphics
and allow for interactive modeling in the viewport by moving
gizmos. While Xfrog’s nodes are well-suited for plants, model
graph nodes are more versatile, as proven by our example.

A demo version of the software is available from www.procedural-
modeling.com/plab.

6 Future Work

The new system could be used to integrate the tool pipelines
outlined in [Deussen et al. 1998] and [Parish and Müller 2001],
[Müller et al. 2006] into a single modeling environment to reduce
user efforts of data exchange between the tools. This will leave
artists more time to create virtual landscapes.

Currently, primitives have to be added by editing the model
graph directly. The interface could therefore be improved by
introducing additional ways to edit the scene in the viewport
and let the program reflect the necessary changes in the model
graph automatically, similar to standard 3D modeling packages. If
editing and replacing steps are recorded in a model graph, this may
pave the way for intuitive, visual L-Systems. Beside procedural
modeling, the system could be used as a visual environment for
producing portable games, since the platform supports Windows
and Linux.

Operators could be created for various procedural modeling tech-
niques, including Euler operators, constructive solid geometry
(CSG), NURBS, subdivision surfaces, hardware shading and shad-
ows.

References

ACKERMAN, W. B. 1982. Data flow languages. IEEE Computer
15, 2, 15–25.

AHO, A. V., SETHI, R., AND ULLMAN, J. D. 1986. Compil-
ers: principles, techniques, and tools. Addison-Wesley Long-
man Publishing, Boston.

DEUSSEN, O., HANRAHAN, P., LINTERMANN, B., MĚCH, R.,
PHARR, M., AND PRUSINKIEWICZ, P. 1998. Realistic model-
ing and rendering of plant ecosystems. In Proceedings of ACM
SIGGRAPH 98, ACM Press, New York, 275–286.

GOETZ, F., BORAU, R., AND DOMIK, G. 2004. An XML-based
visual shading language for vertex and fragment shaders. In
Web3D ’04: Proceedings of the ninth international conference
on 3D Web technology, ACM Press, New York, 87–97.

GOULD, D. A. D. 2002. Complete Maya programming - An exten-
sive guide to MEL and the C++ API. Elsevier, San Francisco.

HANAN, J. S. 1992. Parametric L-systems and their application
to the modelling and visualization of plants. PhD thesis.

HAVEMANN, S. 2005. Generative mesh modeling. PhD thesis, TU
Braunschweig.

JOHNSTON, W. M., HANNA, J. R. P., AND MILLAR, R. J. 2004.
Advances in dataflow programming languages. ACM Comput.
Surv. 36, 1, 1–34.

LINDENMAYER, A. 1968. Mathematical models for cellular in-
teractions in development, parts I and II. Journal of Theoretical
Biology 18, 280–315.

LINTERMANN, B., AND DEUSSEN, O. 1998. A modelling method
and user interface for creating plants. Computer Graphics Forum
17, 1, 73–82.

MÜLLER, P., WONKA, P., HAEGLER, S., ULMER, A., AND
GOOL, L. V. 2006. Procedural modeling of buildings. ACM
Transactions on Graphics 25, 3, 614–623.

OPPENHEIMER, P. E. 1986. Real time design and animation of
fractal plants and trees. In Computer Graphics (Proceedings of
SIGGRAPH 86), ACM Press, New York, 55–64.

PARISH, Y. I. H., AND MÜLLER, P. 2001. Procedural modeling
of cities. In Proceedings of ACM SIGGRAPH 2001, ACM Press,
E. Fiume, Ed., New York, 301–308.

PRUSINKIEWICZ, P., AND LINDENMAYER, A. 1990. The algo-
rithmic beauty of plants. Springer-Verlag, New York.

SMITH, A. R. 1984. Plants, fractals, and formal languages.
In Computer Graphics (Proceedings of ACM SIGGRAPH 84),
ACM Press, New York, 1–10.

SNYDER, J. M. 1992. Generative modeling for computer graphics
and CAD: symbolic shape design using interval analysis. Aca-
demic Press Professional, San Diego.

STINY, G. 1975. Pictorial and Formal Aspects of Shapes and
Shape Grammars. Birkhauser, Basel, Switzerland.

STRAUSS, P. S., AND CAREY, R. 1992. An object-oriented 3D
graphics toolkit. In Computer Graphics (Proceedings of ACM
SIGGRAPH 92), ACM Press, New York, 341–349.

WONKA, P., WIMMER, M., SILLION, F., AND RIBARSKY, W.
2003. Instant architecture. ACM Transactions on Graphics 22,
3, 669–677.

